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A study is made of the possible cause for sorption hysteresis in the case of cylindricsd 
pores of uniform diameter, open at both ends. By means of simple thermodynamic 
reasoning, the equation of Cohan for capillary condensation in open cylinders during 
adsorption, is shown not to be suitable for quantitative work. After the introduction of 
the t curve of multimolecular adsorption, a model is given for the occurrence of hysteresis 
in this special case. From this model, quantitative relations are derived for the sponta- 
neous filling of pores during adsorption, as well as for the evaporation of capillary con- 
densate on desorption, in dependence of the pore radius. The reIation between these 
equations and the work of Foster and Derjaquin is discussed. 

1. INTRODUCTION 

In Article V of this series (I), it was 
shown that on plotting the adsorption 
branch of the nitrogen sorption isotherm 
according to the t method, valuable indica- 
tions may be obtained with respect to the 
characteristics of the pore system present. 
In many cases the picture formed from the 
information given by the t plot may be 
substantiated by a study of the form of the 
hysteresis loop exhibited by the nitrogen 
sorption isotherm (2). The combination of 
t plot and characterization of the hysteresis 
loop often leads to a clear picture of the pore 
system present. Thus, for slit-shaped pores, 
a linear t plot is to be expected for t values 
smaller than half the pore width of the pores 
present. When the thickness of the adsorbed 
layer exceeds this value for a certain fraction 
of the pores present, a downward deviation 
of the t plot is to be expected. On desorption, 
slit-shaped pores will give rise to the exist- 
ence of a distinct hysteresis loop. For pores, 
consisting of inwardly curved walls, at a 

certain pressure capillary condensation dur- 
ing adsorption will set in, initially resulting 
in an upwardly curvature of the t plot. 

Different models may be set up for pores 
exhibiting curved walls. If the hysteresis 
loop exhibits an A-type behavior, the pores 
-as an idealization-may be pictured as 
consisting of open cylindrical pores of 
uniform radius. On the other hand, pores 
may be pictured to consist of wide bodies, 
closed on all sides but for a certain number 
of narrow necks. It may be expected that 
the corresponding hysteresis loop is of the 
B type [see Part II of this series (S)]. In 
practice combinations of several types may 
be found, although examples of both types 
have been found, as was shown in Part IV 
of this series (4). 

Additional information may be obtained 
from the calculation of pore distributions 
according to one of the models selected 
(2, 3). If the model chosen is a realistic one, 
the calculated cumulative surface area, 
under certain restrictions, becomes equal to 
the surface area calculated from the initial 
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part of the isotherm either by means of the 
BET equation or by the t method (4). 

There is, however, some ambiguity with 
respect to the calculation of pore distribu- 
tions from the adsorption branch. For 
isotherms exhibiting the A type of hysteresis 
loop, we may assume the model of open 
cylindrical pores (2). In such a case, the 
adsorption branch is only metastable with 
respect to the desorption branch, and the 
classical Kelvin equation may not be ap- 
plied to it in calculating the pore distribution. 
In the present article, it will be shown that 
certain thermodynamic corrections may be 
applied to enable the calculation of pore 
distributions for the model of open cylin- 
drical pores. 

2. THEORIES OF COHAN AND OF FOSTER 

Already in 1932, Foster (5), after a 
critical analysis of a number of isotherms 
of benzene and alcohol adsorhed on silica or 
on ferric oxide gel at different temperatures, 
showed that the adsorption branch in the 
case of hysteresis does not conform to 
analysis by means of the Kelvin equation. 
Foster supposed that the adsorption branch 
is governed by the formation of a multi- 
molecular adsorption layer, until the narrow 
parts of the pores are blocked and a me- 
niscus is formed, resulting in capillary 
condensation. 

In 1938, Cohan (6) proposed a different 
approach. He assumed that the Kelvin 
equation may be applied to the cylindrical 
meniscus, formed by the gas-adsorbed layer 
interface present in a cylindrical pore. 
According to the Kelvin equation, the vapor 
pressure corresponding t’o such a cylindrical 
meniscus is given by 

P/PO = exp [-rV,IRT(r - t)] (1) 

where y is the surface tension (assumed to be 
equal to that of the bulk condensed phase); 
V,, the molar volume of the adsorbate; R, 
the gas constant; r, the pore radius; and 1, 
the thickness of the adsorbed film. If the 
vapor pressure exceeds the value given by 
(I), Cohan supposes capillary condensation 
to take place at the cylindrical film at the 
walls of the pores and consequently the 
pores to be filled by capillary condensate. 

During desorption it may be assumed that 
a hemispherical meniscus is present at the 
mouth of the pore, its vapor pressure being 
given by 

p/p, = exp [-2rV,lRT(r - t)l (2) 
If the vapor pressure is decreased below the 
value given by (a), capillary evaporation 
takes place and the pore is emptied except 
for a certain thickness of the adsorbed 
layer. From a comparison of (1) and (a), it 
is evident that this viewpoint immediately 
gives an explanation for the existence of 
hysteresis, as well as for the connection 
between the model of open cylinders and the 
A-type hysteresis loop. 

In 1952, Foster (7) tried to combine his 
original viewpoint with that of Cohan, by 
taking the multilayer and the cylindrical 
meniscus effect together, resulting in the 
picture of a curved multilayer, only stable 
up to certain relative pressures, thereafter 
leading to capillary condensation. Foster 
tried to explain sorption hysteresis as well as 
the existence of a pressure where hysteresis 
is no longer observed. This last viewpoint is 
certainly not correct, as Foster neglected the 
adsorption effect in analyzing the desorption 
branch. When this is done, the existence of 
hysteresis interception may no longer be 
explained in this way. Nevertheless, Foster’s 
viewpoint is suitable for a quantitative 
application to the analysis of the adsorption 
branch of isotherms in the case of open 
cylindrical pores. Before we do this, it is 
worthwhile to incorporate Foster’s viewpoint 
into a general thermodynamic picture for the 
combined multilayer adsorption and capil- 
lary condensation in open cylinders. 

3. THERMODYNAMIC TREATMENT 
OF CAPILLARY CONDENSATION 
IN OPEN CYLINDRICAL PORES 

The vapor pressure of a cylindrical film of 
thickness t, present on the walls of an open 
cylindrical pore of radius r, is governed by 
the requirement of equilibrium with respect 
to mass transfer between the vapor phase 
and the adsorbed film at constant tempera- 
ture and pressure. This may be exemplified 
by considering changes in the total free 
enthalpy of the syst,em (including pore as 
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well as vapor phase) at constant tempera- 
ture and pressure (8), with respect to the 
transfer of dN moles of vapor to the ad- 
sorbed film 

dG,,T = pcdN - pgdN + TdA (3) 

where pe and pg are the thermodynamic 
potentials of the condensed phase and the 
gaseous phase, respectively, and dA is the 
change in free surface area of the condensed 
film upon condensation of dN moles of 
vapor. There exists a very simple relation- 
ship between dN and dA, viz., 

dA/dN = - Vm/(r - t) (4) 

where t is the thickness of the condensed 
phase at the walls of the pore and V%, the 
molar volume of the condensed phase. 

In equilibrium, the following relation 
holds at constant temperature and pressure : 

dG,,T = 0 (5) 

Combination of (3), (4), and (5) leads to 

PC - &J = rVml(r - 2) 03) 

When the vapor phase obeys the ideal gas 
law and the condensed phase is identical to 
that of the bulk liquid, Eq. (6) is identical to 
Eq. (I), as derived by Cohan, viz., the 
Kelvin equation applied to the cylindrical 
meniscus of the adsorbed layer. 

As may be clear, it is assumed that the 
properties of the adsorbed layer are identical 
to those of the bulk liquid. This, however, 
leads to inconsistencies, which make the 
application of Eq. (1) questionable. To show 
this, it is well to realize that for the equilib- 
rium to be stable, the free enthalpy of the 
whole system has to be a minimum with 
respect to virtual changes in the amount 
condensed from the gaseous phase at 
constant temperature and pressure. Equa- 
tion (5) may correspond to a minimum as 
well as to a maximum. To determine the 
nature of the extreme in the free enthalpy, 
corresponding to (6), we have to determine 
the sign of the second derivative of the free 
enthalpy with respect to N, the number of 
moles present as a condensed phase. For 
stable equilibrium, 

d2G/dN2,,T 2 0 (7) 

Under the conditions underlying Cohan’s 
equation, viz., P, constant and equal to that 
of the bulk liquid at the same temperature, 
the second derivative of G with respect to N 
is calculated to be equal to 

d=G/dN=,,T = -rVm/(r - t)=dt/dN (8) 

As dt/dN is always positive, the second 
derivative is seen to be always negative, 
corresponding to an unstable equilibrium, 
and to a maximum in the free enthalpy. 

To illustrate what this means exactly, the 
total change in free enthalpy of the system 
has been calculated, when the thickness of 
the condensed phase is increased from a 
certain value ti, the thickness of the ad- 
sorbed layer,to an arbitrary value t Ir at 
a constant temperature and pressure. In 
principle, such a change in free enthalpy of 
the system is given by 

AG = 
s 

,“’ bc - ddN + /-A rdA 
I Ai 

?rL = 2 
[/ 

t 

VW% ti 2bc - ~Lg)k - t)dt 

- ayv?& - ti) I , (9) 
where L, is the length of the pore under 
consideration. 

Under the conditions corresponding to 
Eq. (8), where pc - P, is constant and equal 
to RT ln[(pO/p) 1, this simply is equal to 

- p + ti”> - 2rV& - t4) 
I 

(10) 

The function AG - t as plotted according to 
Eq. (lo), is represented in Fig. 1 for different 
pressures. There are two singular curves to 
be distinguished in this figure. At pressures 
lower than pD filling of the pores corresponds 
to an increase of the free enthalpy of the 
system and filling will not occur. At pres- 
sures equal to or higher than pD filling 
is thermodynamically possible, but corre- 
sponds to the crossing of a free enthalpy 
barrier. Filling on account of the existence 
of the barrier will not occur spontaneously, 
although the process would lead to a 
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thermodynamically more stable state. At 
the pressure pD itself, the filled pore is 
thermodynamically just stable with respect 
to the pore only carrying an adsorbed film, 
and AG is exactly zero for complete filling. 
If, in Eq. (lo), r is put equal to t, and AG is 
taken to be equal to zero, then the corre- 
sponding value of p/p, is seen to be exactly 
that given by Eq. (2) for desorption. At 
lower pressures, desorption takes places. In 
this case, there is no pot,ential barrier, as 

a 

FK. 1. aG as a function of 1, the thickness of the 
condensed layer in a cylindrical pore, for different 
pressures, according to Eq. (10). The relative 
pressure is increasing from PI to l’s, The region of 
sorption hysteresis is hatched. 

the desorption takes place by gradually 
emptying of the pores by evaporation from 
the hemispherical meniscus present at the 
mouth of the pore. 

At the pressure PA, every increase in 
thickness of the adsorbed layer corresponds 
to a decrease in the free enthalpy of the 
system, and spontaneous filling will take 
place. From the figure, the occurrence of 
hysteresis finds a very simple explanation. 
The value of PA, at which spontaneous filling 
will occur, is clearly given by the require- 

ment that d(AG)/dl for t = tiis equal to zero. 
Upon differentiating (lo), Eq. (1) is re- 
covered, being the equation of Cohan. 

At the same time, Fig. 1 shows why this 
picture is definitely unrealistic. For the 
value ti, the thickness of the adsorbed layer, 
the free enthalpy of the system exhibits no 
minimum. In principle, t’he free enthalpy of 
the system at constant temperature and 
pressure would be lowered by lowering the 
value of t, the thickness of the adsorbed 
layer, beyond the value ti. The adsorbed 
layer cannot exist as a stable phase at any 
pressure unless it is assumed that the 
properties of the layer are different from 
those of the phase condensed on top of this 
layer. This is the meaning of Eq. (8). In the 
picture of Cohan, there is a discontinuity 
between the adsorbed layer present in the 
pore at a certain pressure and the phase 
condensed on this layer upon increase of the 
thickness t. There is a sharp change in 
properties, occurring in the condensed phase 
at a distance ti from the pore wall, from 
adsorbed phase to bulk liquid. The distance 
at which the change takes place is assumed 
to be dependent on pressures, but not on the 
pore radius. 

This picture is incompatible with the 
existence of a continuous multilayer with a 
thickness probably approaching infinity as 
the saturation pressure is reached. There are 
no indications of an abrupt breaking off of 
the influence of the pore wall on the con- 
densed layer in the case of nitrogen multi- 
layer adsorption, as implicitly required by 
Cohan’s treatment. This means that in all 
Eqs. (3) to (9), the thermodynamic poten- 
tial I.C, of the adsorbed layer has to be 
regarded as dependent on the distance t 
from the pore wall, and only approaching p 
of the bulk liquid for infinite layer thickness. 
For quantitative work the function ,L, as 
dependent on the thickness of the adsorbed 
layer, has to be evaluated from experimental 
data and inserted in the formulas (3) to (9) 
in order to evaluate the thickness of the 
adsorbed layer and the pressure at which a 
cylindrical pore fills or empties, which de- 
pends on the pore radius. This is possible by 
making use of the concept of the universal 
t curve [see Part VI of t.his series (9)]. 
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4. THE INTRODUCTION 
OF THE UNIVERSAL 1 CURVE 

In Part VI of this series (9), it was 
shown that the amount adsorbed per unit of 
area surface present for a large group of 
adsorbents could be represented by one 
universal curve, giving a relation of the 
form : 

If it is assumed that the density of the ad- 
sorbed layer is constant and equal to that of 
the bulk liquid at the same temperature, an 
approximation probably admittable for not 
too small layer thicknesses, the thickness of 
the adsorbed layer may be evaluated, e.g., 
in the case of the adsorption of nitrogen at 
78”K, by means of 

t = 3.54 v,/v,. 

These t values hold for surfaces, which, al- 
though energetically nonhomogeneous, may 
be considered to have a negligible curvature 
with respect to the thickness of the adsorbed 
layer. For such a “flat” surface, it is possible 
to plot these experimental t values as a 
function of RT In (pO/p) : 

RT h (PO/P) = W (11) 

As for such a “flat” surface and for an ideal 
vapor, the function RT In(pO/lp) is equal to 
the difference in thermodynamic potential 
between the “bulk” liquid at the same tem- 
perature and the adsorbed phase of thickness 
t, it is possible to evaluate the thermody- 
namic potential of an adsorbed layer of 
thickness t in the form 

/.&z(t) = PL - F(O (12) 

Strictly speaking, Eq. (12) only holds for 
layers adsorbed at “flat” surfaces. We now 
assume that the thermodynamic potential of 
the adsorbed layer is primarily determined 
by its distance from the pore wall and that 
the influence of the curvature of the pore 
wall on thermodynamic potential of the 
adsorbed layer, in the case of cylindrical 
pores, is negligible. As long as this approxi- 
mation is admitted, Eq. (12) may also be 
used as a relation between the thermody- 
namic potential of the adsorbed layer in 
cylindrical pores and the thickness of this 

adsorbed layer. However, the vapor pres- 
sure of an adsorbed layer of thickness t, 
present in a cylindrical pore of radius r, is 
no longer solely dependent on the thermody- 
namic potential of the layer, as in the case 
of a “flat” surface, but also on the curvature 
of the interface between the adsorbed layer 
and the vapor phase. Consequently, al- 
though Eq. (12) may be used for predicting 
the dependence of the thermodynamic 
potential of an adsorbed layer on its thick- 
ness, Eq. (11) may not be used for calculat- 
ing the vapor pressure of an adsorbed layer 
of thickness t, in a cylindrical pore of 
radius T. In this last case, the relation 
between the equilibrium vapor pressure, the 
equilibrium thickness t,, and the pore radius 
may be calculated by inserting relation (12) 
in Eqs. (3) and (5) of Section 3. By making 
use of (4), and of the fact that in each case 
RT In(p,Jp) is equal to LCL - bcls, the fol- 
lowing relation, which in the case of cylin- 
drical pores is the equivalent of (II), is 
obtained : 

RTh (PO/P) - JW = rVml(r - t> (13) 

If F(t) is known and expressed as an 
analytical function of t, t, may be solved as 
a function of p/p, for different values of r. 
Whether this equation for the film thickness 
corresponds to a stable equilibrium, may be 
determined with the aid of Eq. (7), which 
takes, for t = t,, the form 

--dF(t)/dt - V,/(r - 1)” 2 0 (14) 

When for a certain pore radius, the left 
side of (14), evaluated with the aid of the 
t, value calculated by means of Eq. (13) as a 
function of (p/pO), exactly equals zero, then 
this value of t, is a critical thickness, which 
we shall denote by t,,. An infinitely small 
increase in pressure increases t,, discon- 
tinuously, the equilibrium becomes unstable, 
and the whole pore fills spontaneously with 
capillary condensate. The pressure corre- 
sponding to this critical thickness is the 
pressure of spontaneous capillary condensa- 
tion during adsorption. 

For a given pore radius, r, and a given 
relative pressure p/p0 the total change in 
free enthalpy of the whole system (pore + 
vapor phase) corresponding to an increase 
in the thickness of the condensed phase in 
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the pore from t, to a certain value t I T, 
may be calculated with the aid of Eq. (9), 
which takes the form 

--F(t) (r - t)dt - 27V& - te) 
1 

(15) 

With the aid of (15), lines representingAG 
as a function of t at constant temperature 
and pressure may be calculated for different 
values of (p~/p~). This is schematic- 
ally represented in Fig. 2. 

Pl 

b’~o. 2. AG as a functjion of t, the thickness of the 
condensed layer in a cylindrical pore, for different 
pressures, according to Eq. (15). The relative 
pressure is increasing from PI to A. The region of 
sorpt.ion hysteresis is hatched. 

Again, two singular lines may be distin- 
guished, bounding the region of sorption 
hysteresis, and corresponding to the pres- 
sure pD, the pressure of capillary evapora- 
tion during desorption, and the pressure PA, 
corresponding to the spontaneous filling of 
pores during adsorption. The pressure pD 
is given by the equality 

AGp,r = 0 for t = r 

which corresponds to a pressure determined 
by the following relation: 

(T - fJ2 = 2rl’,(r - t,) 

.I 

r 

+ 2F(t)(r - t)dt, 
t. 

which may be written as 

2-f li??? 
r - & = K7’ ln(p,/p) 

I r 2F(t)(r - tyt 
+ (.I’ 

r - t,)RT Wpdp) . (16) 

5. A COMPARISON 
WITH THE KELVIN EQUATION 

Equation (16) is reminiscent of the 
Kelvin equation. In fact this equation may 
be shown to be the analog for cylindrical 
pores of an equation derived by Derjaguin 
for slit-shaped pores (IO), and it resembles 
an equation already derived by the same 
author in 1940 along different lines of 
reasoning, making use of the concept of 
disjoining pressure (21). When an analytic 
expression for F(t) as a function of t is known, 
1, may be solved for r, where it must be borne 
in mind, however, that RT In (pa/p) has to 
sat.isfy Eq. (13) simultaneously. When this 
is taken into account, Eq. (16) may be used 
for the calculation of pore distributions from 
A-type sorption isotherms, making use of the 
model of cylindrical pores. We hope t,o 
publish the results in a forthcoming paper.* 
For the present, we will restrict ourselves to 
the calculation of the pressure where 
spontaneous capillary condensation takes 
place during adsorption. This pressure 
corresponds to the line pA of Fig. 2. The 
function AG exhibits a point of inflection for 
t = 1, for this pressure, corresponding to 
(d2AG,‘dt2)t=t, = 0. 

Of course, this value for t, is given by the 
left-hand side of Eq. (14) when put equal to 
zero, and thus is equal to t,,. For a certain 
pore radius, each pressure between pD and 
pA corresponds to a metastable state, giving 
rise to hysteresis. The filled pore corresponds 
to a more stable situation than the pore 
equipped with a cylindrical adsorbed layer 
of thickness t,, as given by Eq. (13). Both 
states are separated by a free enthalpy 
barrier. From Fig. 2, it is clear that the 

*This will be Part XII of this series. 
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explanation of Foster for the phenomenon 
of so-called hysteresis inception, the exist- 
ence of a minimum pressure for which 
hysteresis may be observed, is not the right 
one. The values for capillary condensation 
during adsorption, as determined by (14), 
are in accordance with the basic ideas of 
Foster (7). The desorption pressure, how- 
ever, is not given by the classical Kelvin 
equation, but by an equation of the type of 
Eq. (16), which is in concordance with the 
general ideas of Derjaguin (10). In the 
present treatment, both theories are logi- 
cally connected through the systematic 
application of Eq. (9). Also, the existence of 
the phenomenon of hysteresis finds a 
logical explanation from the consideration 
of Fig. 2. At the moment, there is no fully 
satisfactory explanation for the phenomenon 
of hysteresis inception. A possible explana- 
tion could be offered by the “narrowness” of 
the free energy barrier in very narrow pores, 
making the crossing of this barrier towards 
a stable state more easy. As it is question- 
able, however, whether the thermodynamic 
treatment given here, where the adsorbed 
layer is pictured as being continuous, is 
applicable to the situation in very narrow 
pores, viz. for total thicknesses of the 
adsorbed layer close to the dimensions of the 
adsorbate molecules, this point will not be 
elaborated here. 

As will be shown in Article X of this series, 
which is Part B of this paper (following), 
equations (13) and (14) may be applied to 
the calculation of pore distributions from the 
adsorption branch of A-type sorption iso- 
therms, after the introduction of a mathe- 
matical expression for the t curve of multi- 
molecular adsorption. 

6. CONCLUSIONS 

The assumptions underlying the formulas 
of Sections 3 and 4 of this paper are as 
follows : 

(1) The density of the adsorbed phase is 
constant and equal to that of the bulk phase. 

(2) The same applies to the surface ten- 
sion of the interface between the condensed 
phase in the pore and the vapor phase. 
Moreover, the surface tension is assumed to 
be independent of the radius of the meniscus. 

(3) Thermodynamic reasoning along the 
lines of Sections 3 and 4 is applicable to the 
condensed film in the pore. This may not be 
true for small thicknesses of the adsorbed 
film, viz., for very narrow pores or for very 
low pressures. 

(4) The thermodynamic potential of the 
adsorbed layer is not altered significantly by 
the curvature of the pore walls. 

Introducing the universal t curve, the 
following conclusions may be drawn: 

(1) In a cylindrical pore, the thickness of 
the adsorbed layer is different from that on 
a flat surface at the same pressure. 

(2) Filling of open cylindrical pores by 
capillary condensation occurs on behalf of 
the lack of stability of the adsorbed layer 
when a certain pressure is reached, depend- 
ing on the pore radius. 

(3) The pressure at which capillary 
evaporation takes place is seen to be different 
from that of the Kelvin equation. The 
pressure at which desorption takes place 
may be expected to be lower than the 
pressure at which spontaneous filling takes 
place during adsorption. This may not be 
true for very narrow pores. 
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